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ABSTRACT

Three new approximations for the temperature integral, p(x), viz. a series, a three-term
and a two-term, are proposed. The former two approximations have almost the same accuracy
as the Scholmilch series, the percentage deviation being of the order of 1076, The linear
dependence of x on In p(x), of the slope d[In p(x)]/dx on 1/x and of the intercept of the
In p(x) versus x curve on In x have been established. A new equation for the evaluation of
the kinetic parameters has been obtained from the above dependence which can be put in the
form
g(a) AE

s ~ NG g +3.772050-1.921503 In £ —0.120394(E/ T)

In

The validity of this equation, based on the two-term approximation for p(x), has been tested
with data from a theoretical thermogravimetric curve.

INTRODUCTION

Non-isothermal methods have been widely used to study the kinetics and
mechanism of solid-state thermal decomposition reactions [1-5]. The basic
equation generally employed for evaluating the kinetic parameters in non-
isothermal methods is based on the formal kinetic equation used in homoge-
neous kinetics, viz.

da n

T =k(i-a) (1)
in its modified form

da k(T) n

where a, ¢, T, k =k(T), n and ¢ are fraction decomposed, time, tempera-
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ture, specific reaction rate, order parameter and linear heating rate, respec-
tively. A more generalised form of eqn. (2) can be written as

da k(T)
ar- ——f(a) (3)

where f( a) has been defined as the conversion function, which depends on
the mechanism of the process. For most reactions, f(«a) has the form [6]

f(a)=a"(1-a)" (4)

where m and n are called the homogeneity factors. When m =0, eqn. (3)
becomes the same as eqn. (2). The temperature-dependent rate constant,
k(T), is given by the Arrhenius equation

k(T)=A e E/RT (5)

where A and E have the usual meaning. Substituting for k(7T), eqn. (3) can
be re-written as

da _’i —E/RT
TS H(a) (6)

Equatlons (3) and (6) can be integrated as follows.

Tk
=l g er )

¢ da - _fi —E/RT,
a3 e T ®
In eqn. (8) the lower limit, Tj, is taken as zero for all practical purposes [7].
The left-hand side of eqn. (8) can be written as g(a), the correct form of
which depends on the proper mechanism of the decomposition reaction [8].
If fla)=(1—a)", then gla)=[1-(1—a)'""]/(1—n) when n#1 and
—In(1 — a) when n=1. The integral on the right-hand side of eqn. (8)
cannot be integrated in a closed form, because it is an incomplete gamma
function. An incomplete gamma function has (i) a series solution [9-11] and
(i) a solution by numerical integration [6,12—-14]. The series solution for an
incomplete gamma function of the following form are given below.

=] e—"
J Srdu=Qx)

X

Semi-convergent series

x u x? X x?

f°°e' _e [l_g+b(b+1)

+(-1)’

b(b+1)...(b+j—1)] ©)

x/
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Scholmilch series

ce" e’ a a,
du= 1- + o
L ub U b (x+1)  (x+1)(x+2)

(—1)jaj
(x+D(x+2)...(x+))

where a, = b, a2=b2, a3=b3+b, a4=b4+4b2—b, a5=b5+10b3+5b2
+ 8b, etc.

(10)

Rainville function, (b),= 1

—-u o2} J
*® e A-b) .—x (—l) (b)j
fx w © ‘,gg x+h (1)
where (b), =b(b+ 1) (b+2)...(b+j-1).
In asymptotic expansions only a limited number of terms can be used for
the calculation of the numencal values of Q(x). The temperature integral is

only a special case of f (e”“/u®) du with x = E/RT and b = 2. A number

of workers {6,7,12-19] have used different approximations for the evaluation
of the temperature integral, p(x).

A NEW SERIES APPROXIMATION

In this communication we are introducing a new empirical approximation
for the p(x) function which is given below.

( )_e"‘ 2 6 + 28
Pl TG+ 4D (x+3)  (x+1).. (x4 4)
_ 120 + 496 2016 (12)
(x+1)...(x+5) (x+1)...(x+6) (x+1)...(x+7)
Equation (12) can be generalised in the folloyving form when b # 1
et b B b(b*—1)
fx du= Q(")" [ (x+b+1) (b—1)(x+1)...(x+b+1)
b*(b*—1) B b*(b*—1)
(b—l)(x+l) Ax+b6+2) (b—1(x+1)...(x+b+3)
b (b -1)
(b—l)(x+1) Ax+b+4) "
(- 1)<! RIXOE RICY
(b—l)(x+1) (x+b+j)] (13)
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when b =1, eqn. (12) becomes

2e* _eTrl 1 _ b(b—1)
L ubdw_xbb (x+b+1) (x+1)(x+2)...(x+b+1)

b b2+ b+1) BB+ +b+1)

(x+1) ... (x+b+2) (x+1)...(x+5+3)

b+ B+ b*+ b+ 1)
(x+1)...(x+b+4)

(=D g \W7=1) (-1 (j—2y -3
L (D)) T UV 4 h +“l

(x+1)...(x+j+1)
Equation (12) can also be written in another simplified form as
(x)= e”* 1 2 5
P x? (x+3) (x+1)}{x+2)(x+3)

A two-term approximation for eqn. (13) can be given as

ot -5 |21 |

xb x+b+1)

when b = 2, eqn. (15) becomes

Q) =px) -5 | 223

(13a)

(14)

(15)

(16)

which is the two-term apprommatlon for the p(x) function given by Van

Tets [20].

The validity of eqns. (12), (14) and (16) has been tested with reference to
semi-convergent series and Scholmilch series. The data are presented in

Table 1. The p(x) values calculated by the Van Tets approximation

e * 2 6 30
p(x)= 2 {1“(x+ 3) B (x+1)...(x+3)+(x+l)...(x+4)
108 810

TG x4 E D). x56)

are also given for comparison.

EXPRESSION FOR p(x) FUNCTION

It has been established that In p(x) varies linearly with x which can be

put in the form

In p(x)=a+ bx

(17)
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TABLE 2

Values of In p(x), theoretical slope and intercept from e */x2 [(x +1)/(x + 3)] approxima-
tion

x —Inp(x) Slope (b) Intercept (a)
20 26.0824362 —1.0958592 ~4.1652523
25 31.5118596 —-1.0772527 —4.5805415
30 36.8649151 —1.0647116 —4.9235670
35 42.1647633 —1.0556809 —5.2159315
40 47.4253870 -1.0488656 —~5.4707630
45 52.6558846 —1.0435386 —5.6966471
50 57.8625123 —1.0392601 —5.8995000
55 63.0497577 —1.0357479 —6.0836226
60 68.2209500 ~1.0328129 —6.2517610
65 73.3786275 -1.0303236 —6.4059315
70 78.5247700 —1.0281856 —6.5517780
75 83.6609517 —1.0263293 —6.6862535
80 88.7884447 —1.0247025 —6.8122441
85 93.9082920 —1.0232651 —6.9307585
90 99.0213593 —1.0219859 —7.0426280
95 104.1283731 —1.0208400 —7.1485730

100 109.2299488 —1.0198078 —7.2491788

A closer examination of egn. (17) shows that the intercept, a, and slope, b,
vary linearly with In x and 1/x, respectively. These relations can be repre-
sented as

a=a,+ta,Inx (18)
b

b=b,+-2 (19)

When the values of a and b are substituted in eqn. (17), we have

b

Inp(x)=a, +a, 1nx+(b1+?2)x (20)
=a,+b,+a,In x+ bx

or

p(x) _ e(a,+b2)xaz eb,x (21)

Ln p(x) values were calculated using eqn. (16) for x = 20(5)-100. These
values are given in Table 2. The theoretical slope d[In p(x)]/dx was calcu-
lated from eqn. (16) as

diimp()] _ o oy 2, 1 1
ax =slope=b= -1 x+(x+1) (x+3)

The theoretical intercept, a = In p(x) — bx, was also calculated; the corre-
sponding numerical values of slopes and intercepts are given in Table 2.
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From the linear plot of slope versus 1/x, b,, b, and the correlation
coefficient, r, were calculated and their values are as follows: b, =
—1.000953, b, = —1.907067, r = 0.999973. The values of a,, a, and correla-
tion coefficient, r, for the linear plot of intercept versus In x are: q, =
1.609487, a,= —1.921503, r=0.999966. On substituting the numerical
values of a,, a, and b,, b,, eqn. (20) becomes

—1In p(x) = 0.297580 + 1.921503 In x + 1.000953x (22)

‘When x=E/RT and R =8.314 J mol~! K~! are introduced in egn. (22),
then

—1In p(E/RT) = —3.772050 + 1.921503 In( E/T) +0.120394(E/T) (23)

In eqn. (22) we have shown that In p(x) is a linear function of x, and the
slopes and the intercepts are linear functions of 1/x and In x, respectively.
This means that In p(x) will vary linearly with 1/7 as well as with E at
constant E and at constant T, respectively. It is also found that the
intercepts obtained from In p(x) versus 1/7 and In p(x) versus E can be
related to In E and In 7, respectively. When x = E/RT is substituted for
p(x) in eqn. (16), we get

p(x) = KT eor] EXET ] ”
Therefore
—Inp(x)=-2InR—2InT+2In E+ E/RT—In(E+ RT)

+In(E + 3RT)... (25)

In eqn. (24) E and T are variables.

The numerical values of In p(x) were evaluated using Scholmilch ap-
proximation [21] for various values of E (E =60(10)-400 kJ mol~') at
constant T and for various values of T (7 = 300(10)-800 K) at constant E.
The variations of In p(x) with 1/7 at constant E can be put in the form

Inp(x)=A4A+B/T (26)

The slope, B, and the intercept, A, were calculated and these are given in
Table 3. It is found that the slope, B, varies linearly with E and, therefore,
the relation becomes

B=B,+B,E 27
The intercept, A, is also related to In E

A=A, +A,In E (28)
Combining eqns. (27) and (28) with eqn. (26)

&+&E)

- (29)

Inp(x)=4,+4,1n E+(
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TABLE 3

Values of slope, intercept and correlation coefficient for log p(x) versus 1/7 plots at
constant E

E (kJ mol™1) Slope (B) Intercept (A4) r
60.0 —0.3530613 x10* —1.546872 0.99990196
70.0 —0.4055747 x 104 —1.667876 0.99992385
80.0 —0.4580284 x 10* - —1.773858 0.99993912
90.0 —0.5104400 x 104 —1.868167 0.99995022
100.0 —0.5628208 x 104 —1.953137 0.99995852
110.0 ~0.6151784 % 10* —2.030464 0.99996490
120.0 —0.6675810x10* —2.101418 0.99996991
130.0 —0.7198434 x 10* —2.166975 0.99997392
140.0 —0.7721574 x10* —2.227903 0.99997717
150.0 —0.8244619 % 10* —2.284814 0.99997985
160.0 —0.8767587 x10* —2.338208 0.99998209
170.0 —0.9290490 x 10* —2.388496 0.99998397
180.0 —0.9813338 x10* —2.436021 0.99998557
190.0 —0.1033614x10° —2.481071 0.99998694
200.0 —-0.1085890 % 10° —2.523892 0.99998812
210.0 —0.1138163 x 10° —2.564695 0.99998915
220.0 —0.1190432 x 10° —2.603662 0.99999006
230.0 —0.1242699 x 10° —2.640952 0.99999085
240.0 —0.1294963 x 10° —2.676703 0.99999155
250.0 —0.1347226 X 10° —2.711037 0.99999217
260.0 -0.1399486 x 10° —2.744064 0.99999273
270.0 —0.1451745x 10° —2.775878 0.99999323
280.0 —0.1504002 x 10° —2.806565 0.99999368
290.0 —0.1556258 x 10° —2.836204 0.99999409
300.0 —0.1608513 x 10° —2.864864 0.99999446
310.0 —0.1660767 x10° —2.892606 0.99999479
320.0 —0.1713019x 10° ~2.919489 0.99999509
330.0 —0.1765271 x 10° —2.945563 0.99999538
340.0 —0.1817522x10° —2.970877 0.99999563
350.0 —0.1869772 % 10° —2.995473 0.99999587
360.0 —0.1922021 x 103 —3.019391 0.99999609
370.0 —0.1974270% 103 —3.042667 0.99999629
380.0 —0.2026518 x 10° —3.065335 0.99999647
390.0 —0.2078765 x 10° —3.087426 0.99999664
400.0 —0.2131012 x10° - 3.108969 0.99999680

The numerical values of the constants 4,, 4,,- B,, B, and the correlation,
coefficient, r, for the linear plots are given below (base 10 logarithms were
used in these calculations). For a slope versus E plot: B; = —0.400808 X 10,
B, = —5.227990 X 10~ 2, r = 0.99999992. For an intercept versus log E plot:
A, =7.575626, A, = —1.906026, r =0.99993945. The log(intercept) versus
log E plot has a correlation coefficient of 0.999220, but the intercept versus
In E plot gives a much higher correlation coefficient (0.99993945); hence, we
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chose the latter. Keeping T constant, the variations of In p(x) versus E were
evaluated and the relation can be represented as

Inp(x)=X+YE (30)

The values of the slope, Y, intercept, X, and the correlation coefficient for
the plots are given in Table 4. X and Y were also related to 1/7 and In T,
respectively. The relations can be put in the form

Y=Y,+Y,/T (31)
X=X,+X,InT (32)
Combining eqns. (31) and (32) with eqn. (30), In p(x) becomes

Inp(x)=X;+X, nT+(Y,+ Y,/T)E (33)
The numerical values of X;, X,, Y}, Y, and r are given below (data are to
log,,)- Slope versus 1/T plot: Y, = —0.418466 X 10~°, Y, = —5.227990 X
1072, r=0.99999998. Intercept versus log T plot: X, = —7.568931, X, =
1.908397, r = 0.99998649. Since the intercept versus log T plot has a better

correlation than the log(intercept) versus log T plot, the former is chosen.
Therefore, the two equations can be written as:

—log p(x) = —7.575626 + 1.906026 log E

+(0.400808 x 10% + 5.227990 X 10~ 2E) /T (34)
—log p(x) =7.568931 — 1.908397 log T
+(0.418466 x 107° + 5.227990 X 10~ 2/T)E (35)
Zsako [6] has given the relation between In g(a) and In p(x) as
AE
Ing(a)—Inp(x)= lnﬁ

On substituting the values of p(x) from eqn. (23) and transposing
Ing(a)= ln% + 3.772050 — 1.921503 In( E/T) — 0.120394( E/T) (36)
- or

g(a) AE
1n[m] =InZ% +3.772050 — 1.921503 In E — 0.120394(E/T)  (37)

The plot of the left-hand side of eqn. (37) against 1/7T gives a linear curve;
the slope is equal to —0.120394F and the intercept equals In(AE/¢R) +
3.772050 — 1.921503 In E, which on simplification gives

intercept = In( A /¢) — 0.921503 In E — 5.889991

E and A can be calculated from the slope and the intercept, respectively.



TABLE 4

Values of slope, intercept and correlation coefficient for log p(x) versus E plots at constant T’

T(K) Slope (Y) Intercept ( X) r

300 —1.784371 x 10~ * —2.844525 0.99998301
310 —1.728183x 104 —2.816869 0.99998192
320 —1.675506 1074 —2.790115 0.99998080
330 —1.626020x1074 —2.764207 0.99997965
340 —1.599445% 1074 —2.739094 0.99997847
350 —1.535532x107* —2.714731 0.99997726
360 —1.494053x10~* —2.691074 0.99997602
370 —1.454819x 1074 —2.668086 0.99997476
380 —1.417647x107* —2.645729 0.99997346
390 —1.382081x 104 —2.623972 0.99997214
400 —1.348877x10* —2.602784 0.99997079
410 —1.317001 x 104 —2.582136 0.99996941
420 ~1.286654x 1074 ~2.562003 0.99996808
430 ~1.257712x107* —2.542369 0.99996658
440 —-1.230084x10™4 —2.523184 0.99996513
450 —1.203684x 104 —2.504455 0.99996362
460 —1.177843 1074 —2.486152 0.99996212
470 —1.154251x107* —2.468258 0.99996058
480 —1.131079x 10~ —2.450755 0.99995904
490 —1.108852x 104 ~2.433627 0.99995742
500 —1.087513x1074 —2.416858 0.99995584
510 —-1.067010x 104 ~—2.400435 0.99995418
520 —1.047295x 104 —2.384343 0.99995252
530 —1.028324x107* —2.368570 0.99995084
540 —1.010054x 104 —2.353105 0.99994913
550 —9.924488 X103 —2.337935 0.99994739
560 —9.754714x1073 —2.323051 0.99994563
570 —9.590891 103 —2.308441 0.99994385
580 -9.432713x107° —2.294097 0.99994204
590 —9.279890 % 103 —~2.280008 0.99994021
600 -9.132157x107° —2.266167 0.99993837
610 ~8.989262x10~° —2.252566 0.99993649
620 —8.850972x 1077 —2.239196 0.99993460
630 —8.717067 x 1073 —2.226051 0.99993268
640 —8.587334x107% —2.213120 0.99993074
650 —8.461604x 107 —2.200401 0.99992878
660 —8.339672x107° —2.187886 0.99992679
670 —8.221374x1073 —2.175568 0.99992479
680 —8.106552x107° —2.163441 0.99992276
690 —17.995054x 1073 —2.151501 0.99992072
700 —7.886737x10% —2.139741 0.99991865
710 ~7.781467x 103 —2.128156 0.99991656
720 —17.679117x 1073 —2.116742 0.99991445
730 —7.579567 %1073 —2.105497 0.99991232
740 —17.482704x 1073 —2.694407 0.99991018
750 —7.388420x10°3 -—2.083476 0.99990801
760 —7.296613x1073 —2.072698 0.99990582
770 —7.207188 x 103 -2.062069 0.99990361
780 —7.120051 x 103 —2.051585 0.99990139
790 —17.035117x10°3 —2.041241 0.99989914

800 —6.952303x107° -2.031035 0.99989650
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VALIDITY OF THE PROPOSED APPROXIMATION.

The validity of the simple approximation, viz. p(x)=e™*/x2 [(x + 1)/(x
+ 3)], was tested by introducing the kinetic data from a theoretical TG curve
in eqn. (37). Theoretical T values were generated using the first-order
equation along with the two-term approximation for the p(x) function.
Arbitrary values of E =100 kJ mol™!, 4 =1X10" 57!, ¢ =10°C min~!
and R=18.314 J mol™! K™™' were used in eqn. (38), which is given below.

ART? ;| (E+RT)
-1n(1—oz)=g(a)=—;E—e / [(ETéET_)]

T values were calculated by an iteration method for a ranging from 0.05 to
0.95 with an increment of 0.05 and T ranging from 300 to 800 K with a
0.001 increment. The theoretical values of T are given in Table 5. Using
these T values, E was recalculated using eqn. (37). Similar plots were drawn
for the Coats—Redfern [22] and MacCallum-Tanner [23] equations for
comparison. The E values obtained from the three equations and the
percentage deviations from the theoretical value are given in Table 6. The

(38)

TABLE 5

Theoretical T values for different a

a 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 045 0.50
T(K) 396.736 405.916 411.608 415.859 419.324 422.297 424.297 427.353 429.603 431.739
a 0.55 060  0.65 0.70 0.75 0.80 0.85 0.90 0.95

T(K) 433.802 435.825 437.844 439.895 442.025 444.301 446.835 449.856 454.023

TABLE 6

Comparison of E values for different approximations

Approximation /equation E % deviation
(kJmol™')  from theoretical value *

(1) Equation (37) of present work

ln[ %g;zm = lné—é +3.77205-1.921503 In E = 99.6266 0.3734
T" $R _0.120394( E/T)
(2) Coats and Redfern
&) | ﬂ( _2RT ) _E
ln[ = ] = ln[ oF 1 z RT 99.4384 0.5616
(3) MacCallum and Tanner
log g(a) = log% ~0.483E04% 98.6046 1.3954
PR (0.449+0.217E) x10°
T

* Theoretical value of E =100 kJ mol 1.
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observed deviations from the theoretical E value are 0.3734, 0.5616 and
1.3954% for eqn. (37) (present work), Coats—Redfern and MacCallum-
Tanner equations, respectively.

The validity of our approximation was further confirmed by the E value
computed from Gyulai and Greenhow theoretical TG data [24]. When these
data were introduced in eqn. (37), the E value obtained by us is 251.093 kJ
mol~! whereas that calculated by Gyulai and Greenhow is 251.333 kJ
mol~'; the theoretical value of E assumed by these authors is 251.160 kJ
mol~!. The percentage error for the two approximations is 0.0267 and
0.0689, respectively, from the theoretical value (E = 251.160 kJ mol 7).

CONCLUSION

The series approximation given by eqn. (12) and the approximation given
by Scholmilch [21]

e™* 2 4 10
PO =T G T o) ) ). (7))
30 148

TGAD.. . (x+4) (x+1). (x+5)
give close values of p(x), and the percentage deviation between the two is
1.92 X 107¢ (for x = 20).

The three-term approximation for p(x) given in eqn. (14) also agrees very
well with the Scholmilch approximation. It is found that the approximation
used in eqn. (14) is much superior to all other approximations with a
minimum percentage deviation of 1.15 X 10~ (for x = 20).

Equation (23) gives close values of E for the theoretically generated TG
curve which indicates that the intercept from In p(x) versus 1/T or E plots
can be linearly related to In E or In T better than In(intercept) versus In E
orln 7.

Equation (37) which employs 7192153 in place of T2 as in the Coats and
Redfern equation, gives values of E closer to the theoretical value. Similarly,
eqn. (37) gives more accurate E values than those from the Coats—Redfern
and MacCallum-Tanner equations. Therefore, eqn. (37), based on the two-
term approximation proposed in the present work, is the best suited solution
for the evaluation of kinetic parameters from thermogravimetric (TG) ex-
periments.
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