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Three new approximations for the temperature integral, p(x), viz. a series, a three-term 
and a two-term, are proposed. The former two approximations have almost the same accuracy 

as the Scholmilch series, the percentage deviation being of the order of 10e6. The linear 

dependence of x on In p(x), of the slope d[ln p( x)]/dx on l/x and of the intercept of the 
In p(x) versus x curve on In x have been established. A new equation for the evaluation of 
the kinetic parameters has been obtained from the above dependence which can be put in the 
form 

*npo,lnAE 
jd .921503 +R + 3.772050- 1.921503 In E -0.120394( E/T) 

The validity of this equation, based on the two-term approximation for p(x). has been tested 
with data from a theoretical thermogravimetric curve. 

INTRODUCTION 

Non-isothermal methods have been widely used to study the kinetics and 
mechanism of solid-state thermal decomposition reactions [l-5]. The basic 
equation generally employed for evaluating the kinetic parameters in non- 
isothermal methods is based on the formal kinetic equation used in homoge- 
neous kinetics, viz. 

$=k(l-cx)” (1) 

in its modified form 

(2) 

where (Y, t, T, k = k(T), n and $I are fraction decomposed, time, tempera- 
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ture, specific reaction rate, order parameter and linear heating rate, respec- 
tively. A more generalised form of eqn. (2) can be written as 

da _ k(T)qa) 
dT- ql 

where f(a) has been defined as the conversion function, which depends on 
the mechanism of the process. For most reactions, f( cu) has the form [6] 

f(a) = am(1- a)” (4) 
where m and n are called the homogeneity factors. When m = 0, eqn. (3) 
becomes the same as eqn. (2). The temperature-dependent rate constant, 
k(T), is given by the Arrhenius equation 

k(T) = A e-E/RT (5) 
where A and E have the usual meaning. Substituting for k(T), eqn. (3) can 
be re-written as 

da A -x-e 
dT 9 

-E’R=f( a) 

Equations (3) and (6) can be integrated as follows. 

c& = jT;ydT (7) 

In eqn. (8) the lower limit, To, is taken as zero for all practical purposes [7]. 
The left-hand side of eqn. (8) can be written as g(a), the correct form of 
which depends on the proper mechanism of the decomposition reaction [8]. 
If f(a) = (1 - CX)~, then g(a) = [l - (1 - CY)‘-“]/(l - n) when n # 1 and 
- ln(1 - a) when n = 1. The integral on the right-hand side of eqn. (8) 
cannot be integrated in a closed form, because it is an incomplete gamma 
function. An incamplete gamma function has (i) a series solution [9-111 and 
(ii) a solution by numerical integration [6,12-141. The series solution for an 
incomplete gamma function of the following form are given below. 

/ x 
“Fdu = Q(x) 

Semi-convergent series 
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Scholmilch series 

/ x 

-J+c l- 

Xb [ (XL) + (x+$x+2) --* 
( -lyaj 

+ (x+l)(x+2)...(x+j) 1 
00) 

where a, = b, a2 = b*, a3 = b3 + b, a4 = b4 + 4b2 - b, a5 = b5 + lob3 + 5b2 
+ 8b, etc. 

Rainville function, (b), = 1 

/ 

co e-u 

x 

U,du = x(‘-~) emx c 
j-0 

x(i+l) 

43 (-l)‘(b)j 
(11) 

In asymptotic expansions only a limited number of terms can be used for 
the calculation of the numerical values of Q(x). The temperature integral is 

only a special case of 
J 

(e-“/u’) du with x = E/RT and b = 2. A number 

of workers [6,7,12-191 have used different approximations for the evaluation 
of the temperature integral, p(x). 

A NEW SERIES APPROXIMATION 

In this communication we are introducing a new empirical approximation 
for the p(x) function which is given below. 

p(x)=s 1-(x:3) - (x+l).P.(x+3) + (x+1)2.g(x+4) 

120 496 2016 
- (x+l)...(x+5) + (x+l)...(x+6) - (x+l)...(x+7) (12) 1 

Equation (12) can be generalised in the following form when b # 1 

J m5du=Q(+F 
b(b2 - 1) 

x (x+:+1) - (b-l)(x+l)...(x+b+l) 

b2(b3 - 1) b3( b4 - 1) 
+ (b_l)(x+l)...(x+b+2) - (b_l)(x+l)...(x+b+3) 

b4( b5 - 1) 

+ (b_l)(x+l)...(x+b+4) *” 

(_ l)(j-‘)bU-l)(bj _ 1) 

+ (b-l)(x+l)...(x+b+j) 1 (13) 
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when b = 1, eqn. (12) becomes 

b2fb2 + b + 1) b3(b3 + b2 + b + 1) 
+ (x+l)...(x+b+2) - (xfl)...(x+b+3) 

+ b4(b4+b3+b2+b+l) 

(x+l)...(x+b+4) I’* 

+ ( _ l)(j-l~(b)(j-l~( b)“-” + b(j-2) + b”-3’ 

c 
(x+l)..*(x+j+l) ‘** 1 

(13a) 

Equation (12) can also he written in another simplified form as 

p(X)==5 l- 
I (X:3)-(X+1)(X:2)(.X+3) I 

A two-term approximation for eqn. (13) can be given as 

when b = 2, eqn. (15) becomes 

which is the two-term appro~mation for the p(x) function given by Van 
Tets [20]. 

The validity of eqns. (12), (14) and (16) has been tested with reference to 
semi-convergent series and Schohnilch series. The data are presented in 
Table 1. The p(x) values calculated by the Van Tets approximation 

p(x)=? I- 
[ 

2 
6 30 

(x+3) - (x+f)...(x+3) + (“x-+l)...(x+4) 

108 
- (x+l)...(x-M) + fx+I)81~(~+6) *** I 

are also given for comparison. 

EXPRESSION FOR p(x) FUNCTION 

It has been established that In p(x) varies linearly with x which can be 
put in the form 

In p(x) = a + bx (17) 
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TABLE 2 

Values of In p(x), theoretical slope and intercept from edX/x * [(x + l)/( x + 3)] approxima- 
tion 

n -In p(x) Slope (b) 

20 26.0824362 - 1.0958592 
25 31.5118596 - 1.0772527 
30 36.8649151 - 1.0647116 
35 42.1647633 - 1.0556809 
40 47.4253870 - 1.0488656 
45 52.6558846 - 1.0435386 
50 57.8625123 - 1.0392601 
55 63.0497577 - 1.0357479 
60 68.2209500 - 1.0328129 
65 73.3786275 - 1.0303236 
70 78.5247700 - 1.0281856 
75 83.6609517 - 1.0263293 
80 88.7884447 - 1.0247025 
85 93.9082920 - 1.0232651 
90 99.0213593 - 1.0219859 
95 104.1283731 - 1.0208400 

100 109.2299488 - 1.0198078 

Intercept (a) 

- 4.1652523 
- 4.5805415 
- 4.9235670 
- 5.2159315 
- 5.4707630 
- 5.6966471 
- 5.8995000 
- 6.0836226 
- 6.2517610 
- 6.4059315 
- 6.5517780 
- 6.6862535 
- 6.8122441 
- 6.9307585 
- 7.0426280 
- 7.1485730 
- 7.2491788 

A closer examination of eqn. (17) shows that the intercept, a, and slope, b, 
vary linearly with In x and l/x, respectively. These relations can be repre- 
sented as 

~=a, +a, In x (18) 

b-b,+? 
When the values of a and b are substituted in eqn. (17), we have 

In p(x) = a, + u2 In x + b, + $ x 
( 1 

(19) 

(20) 

= a, + b, + a, In x + b,x 

or 

p(x) = e(al +bz)xaz eblx (21) 

Ln p(x) values were calculated using eqn. (16) for x = 20(5)-100. These 
values are given in Table 2. The theoretical slope d[ln p(x)]/dx was calcu- 
lated from eqn. (16) as 

d[ln p(x)] 1 1 
dx 

=slope=b= -1_2+--- 
x (x+1) (x+3) 

The theoretical intercept, a = In p(x) - bx, was also calculated; the corre- 
sponding numerical values of slopes and intercepts are given in Table 2. 
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From the linear plot of slope versus l/x, 6,, b, and the correlation 
coefficient, r, were calculated and their values are as follows: b, = 
- 1.000953, b, = - 1.907067, t = 0.999973. The values of a,, a, and correla- 
tion coefficient, r, for the linear plot of intercept versus In x are: a, = 
1.609487, a, = - 1.921503, t = 0.999966. On substituting the numerical 
values of a,, a, and b,, b,, eqn. (20) becomes 

-In p(x) = 0.297580 + 1.921503 In x + 1.000953x (22) 

When x = E/RT and R = 8.314 J mol-’ K-t are introduced in eqn. (22), 
then 

-In p( E/RT) = - 3.772050 + 1.921503 ln( E/T) + 0.120394( E/T) (23) 

In eqn. (22) we have shown that In p(x) is a linear function of x, and the 
slopes and the intercepts are linear functions of l/x and In x, respectively. 
This means that In p(x) will vary linearly with l/T as well as with E at 
constant E and at constant T, respectively. It is also found that the 
intercepts obtained from In p(x) versus l/T and In p(x) versus E can be 
related to In E and In T, respectively. When x = E/RT is substituted for 
p(x) in eqn. (16), we get 

p(x) = Fe-V[ EE++g] (24 

Therefore 

-lnp(x)= -2ln R-21nT+21n E+E/RT-ln(E+RT) 

+ln(E+ 3RT)... 

In eqn. (24) E and T are variables. 

(25) 

The numerical values of In p(x) were evaluated using Scholmilch ap- 
proximation [21] for various values of E (E = 60(10)-400 kJ mol-‘)’ at 
constant T and for various values of T (T = 300(10)-800 K) at constant E. 
The variations of In p(x) with l/T at constant E can be put in the form 

In p(x) = A + B/T (26) 

The slope, B, and the intercept, A, were calculated and these are given in 
Table 3. It is found that the slope, B, varies linearly with E and, therefore, 
the relation becomes 

B=B,+B,E 

The intercept, A, is also related to In E 

A=A,+A,lnE 

Combining eqns. (27) and (28) with eqn. (26) 

(27) 

(28) 

lnp(x)=A,+A,ln E+ 
iB’+:Ei 

(29) 



TABLE 3 

Values of slope, intercept and correlation coefficient for log p(x) versus l/T plots at 
constant E 

E (kJ mol-‘) Slope (B) 

60.0 -0.3530613 x lo4 

Intercept (A) 

- 1.546872 

r 

0.99990196 
70.0 - 0.4055747 x lo4 
80.0 -0.4580284 x lo4 
90.0 -o.5104400x104 

100.0 - 0.5628208 x lo4 
110.0 - 0.6151784 x lo4 
120.0 - 0.6675810 x lo4 
130.0 -0.7198434 x lo4 
140.0 - 0.7721574 x lo4 
150.0 -0.8244619~10~ 
160.0 - 0.8767587 x lo4 
170.0 - 0.9290490 x lo4 
180.0 - 0.9813338 x lo4 
190.0 - 0.1033614 x lo5 
200.0 -0.1085890 x lo5 
210.0 -0.1138163 x lo5 
220.0 -0.1190432x 10’ 
230.0 - 0.1242699 x lo5 
240.0 - 0.1294963 x lo5 
250.0 -0.1347226 x 10’ 
260.0 - 0.1399486 x lo5 
270.0 - 0.1451745 x 105 
280.0 -0.1504002 x lo5 
290.0 - 0.1556258 x lo5 
300.0 -0.1608513 x lo5 
310.0 - 0.1660767 x lo5 
320.0 -0.1713019 x lo5 
330.0 -0.1765271 x lo5 
340.0 -0.1817522~10~ 
350.0 -0.1869772 x lo5 
360.0 -0.1922021 x lo5 
370.0 -0.1974270x lo5 
380.0 -0.2026518 x lo5 
390.0 - 0.2078765 x lo5 
400.0 -0.2131012 x lo5 

- 1.667876 0.99992385 
- 1.773858 0.99993912 
- 1.868167 0.99995022 
- 1.953137 0.99995852 
- 2.030464 0.99996490 
- 2.101418 0.99996991 
- 2.166975 0.99997392 
- 2.227903 0.99997717 
- 2.284814 0.99997985 
- 2.338208 0.99998209 
- 2.388496 0.99998397 
- 2.436021 0.99998557 
- 2.481071 0.99998694 
- 2.523892 0.99998812 
- 2.564695 0.99998915 
- 2.603662 0.99999006 
- 2.640952 0.99999085 
- 2.676703 0.99999155 
- 2.711037 0.99999217 
- 2.744064 0.99999273 
- 2.775878 0.99999323 
- 2.806565 0.99999368 
- 2.836204 0.99999409 
- 2.864864 0.99999446 
- 2.892606 0.99999479 
- 2.919489 0.99999509 
- 2.945563 0.99999538 
- 2.970877 0.99999563 
- 2.995473 0.99999587 
- 3.019391 0.99999609 
- 3.042667 0.99999629 
- 3.065335 0.99999647 
- 3.087426 0.99999664 
- 3.108969 0.99999680 

The numerical values of the constants A,, A,, B,, B, and the correlation, 
coefficient, r, for the linear plots are given below (base 10 logarithms were 
used in these calculations). For a slope versus E plot: B, = - 0.400808 X 103, 
B, = - 5.227990 x 10e2, r = 0.99999992. For an intercept versus log E plot: 
A, = 7.575626, A, = - 1.906026, r = 0.99993945. The log(intercept) versus 
log E plot has a correlation coefficient of 0.999220, but the intercept versus 
In E plot gives a much higher correlation coefficient (0.99993945); hence, we 
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chose the latter. Keeping T constant, the variations of In p(x) versus E were 
evaluated and the relation can be represented as 

lnp(x)=X+ YE (30) 

The values of the slope, Y, intercept, X, and the correlation coefficient for 
the plots are given in Table 4. X and Y were also related to l/T and In T, 
respectively. The relations can be put in the form 

Y= Y, + Y,/T (31) 

X=X,+X, In T (32) 

Combining eqns. (31) and (32) with eqn. (30), In p(x) becomes 

lnp(x)=X,+X,lnT+(Y,+Y,/T)E (33) 

The numerical values of Xi, X,, Y,, Y, and r are given below (data are to 
log,,). Slope versus l/T plot: Y, = -0.418466 x 10d5, Y, = - 5.227990 x 

10W2, r = 0.99999998. Intercept versus log T plot: X, = - 7.568931, X2 = 
1.908397, r = 0.99998649. Since the intercept versus log T plot has a better 
correlation than the log(intercept) versus log T plot, the former is chosen. 
Therefore, the two equations can be written as: 

-log p(x) = - 7.575626 + 1.906026 log E 

+ (0.400808 x lo3 + 5.227990 x lo-‘E.)/T 

- log p(x) = 7.568931 - 1.908397 log T 

+ (0.418466 x 1O-5 + 5.227990 x 10-‘/T) E 

Zsako [6] has given the relation between In g(a) and In p(x) as 

lng(o)-lnp(*)=ln$ 

On substituting the values of p(x) from eqn. (23) and transposing 

In g(a) = lnAE OR + 3.772050 - 1.921503 ln( E/T) - 0.120394( E/T) 

or 

(34 

(35) 

(36) 

= ln$ + 3.772050 - 1.921503 In E - O-120394( E/T) (37) 

The plot of the left-hand side of eqn. (37) against l/T gives a linear curve; 
the slope is equal to -0.120394E and the intercept equals ln(AE/+R) + 
3.772050 - 1.921503 In E, which on simplification gives 

intercept = ln( A/+) - 0.921503 In E - 5.889991 

E and A can be calculated from the slope and the intercept, respectively. 



TABLE 4 

Values of slope, intercept and correlation coefficient for log p(x) versus E plots at constant T 

TW Slope (Y) Intercept (X) r 

300 - 1.784371 x 1O-4 
310 - 1.728183 x 1O-4 
320 - 1.675506 x 1O-4 
330 - 1.626020 x 1O-4 
340 -1.599445x1o-4 
350 - 1.535532 x 1O-4 
360 -1.494O53x1o-4 
370 -1.454819x 1O-4 
380 - 1.417647 x 1O-4 
390 - 1.382081 x 1O-4 
400 - 1.348877x 10-O 
410 - 1.317001 x 1o-4 
420 -1.286654x1O-4 
430 - 1.257712 x 1O-4 
440 -1.230084x 1O-4 
450 -1.203684x 1O-4 
460 - 1.177843 x 1O-4 
470 - 1.154251 x 1O-4 
480 - 1.131079 x 10-4 
490 - 1.108852x 1O-4 
500 -1.087513x 1O-4 
510 - 1.067010x 1O-4 
520 - 1.047295 x 1O-4 
530 -1.028324x 1O-4 
540 - 1.010054~ io-* 
550 - 9.924488 x lo-’ 
560 -9.754714x10-~ 
570 - 9.590891 x lo-’ 
580 -9.432713xW5 
590 - 9.279890 x 10 - ’ 
600 -9.132157 x lo-’ 
610 -8.989262x10-5 
620 - 8.850972 x 1O-5 
630 - 8.717067 x 1O-5 
640 - 8.587334 x lo-’ 
650 -8.461604x lo-’ 
660 - 8.339672 x 1O-5 
670 -8.221374x1O-5 
680 - 8.106552 x 1O-5 
690 - 7.995054 x 10-5 
700 - 7.886737 x 1O-5 
710 - 7.781467 x 1O-5 
720 -7.679117x1O-5 
730 - 7.579567 x lo-’ 
740 -7.4827O4x1O-5 
750 -7.388420x10-’ 
760 - 7.296613 x 1O-5 
770 -7.207188x10-5 
780 -7.12OO51x1O-5 
790 - 7.035117 x10-s 
800 - 6.952303 x lo- 5 

- 2.844525 0.99998301 
- 2.816869 0.99998192 
- 2.790115 0.99998080 
- 2.764207 0.99997965 
- 2.739094 0.99997847 
- 2.714731 0.99997726 
- 2.691074 0.99997602 
- 2.668086 0.99997476 
- 2.645729 0.99997346 
- 2.623972 0.99997214 
- 2.602784 0.99997079 
- 2.582136 0.99996941 
- 2.562003 0.99996808 
- 2.542369 0.99996658 
- 2.523184 0.99996513 
- 2.504455 0.99996362 
- 2.486152 0.99996212 
- 2.468258 0.99996058 
- 2.450755 0.99995904 
- 2.433627 0.99995742 
- 2.416858 0.99995584 
- 2.400435 0.99995418 
- 2.384343 0.99995252 
- 2.368570 0.99995084 
- 2.353105 0.99994913 
- 2.337935 0.99994739 
- 2.323051 0.99994563 
- 2.308441 0.99994385 
- 2.294097 0.99994204 
- 2.280008 0.99994021 
- 2.266167 0.99993837 
- 2.252566 0.99993649 
- 2.239196 0.99993460 
- 2.226051 0.99993268 
- 2.213120 0.99993074 
- 2.200401 0.99992878 
- 2.187886 0.99992679 
- 2.175568 0.99992479 
- 2.163441 0.99992276 
-2.151501 0.99992072 
- 2.139741 0.99991865 
- 2.128156 0.99991656 
- 2.116742 0.99991445 
- 2.105497 0.99991232 
- 2.694407 0.99991018 
- 2.083476 0.99990801 
- 2.072698 0.99990582 
- 2.062069 0.99990361 
- 2.051585 0.99990139 
- 2.041241 0.99989914 
- 2.031035 0.99989690 
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VALIDITY OF THE PROPOSED APPROXIMATION. 

The validity of the simple approximation, viz. p(x) = eex/x2 [(x + 1)/(x 
+ 3)], was tested by introducing the kinetic data from a theoretical TG curve 
in eqn. (37). Theoretical T values were generated using the first-order 
equation along with the two-term approximation for the p(x) function. 
Arbitrary values of E = 100 kJ mol-‘, A = 1 X 10" s-l, (p = 10°C min-’ 
and R = 8.314 J mol-’ K-’ were used in eqn. (38), which is given below. 

-ln(l -a)=g(a)=$e -Wr[ :E=+z)] 

T values were calculated by an iteration method for (Y ranging from 0.05 to 
0.95 with an increment of 0.05 and T ranging from 300 to 800 K with a 
0.001 increment. The theoretical values of T are given in Table 5. Using 
these T values, E was recalculated using eqn. (37). Similar plots were drawn 
for the Coats-Redfern [22] and MacCallum-Tanner [23] equations for 
comparison. The E values obtained from the three equations and the 
percentage deviations from the theoretical value are given in Table 6. The 

TABLE 5 

Theoretical T values for different (Y 

a 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
T(K) 396.736 405.916 411.608 415.859 419.324 422.297 424.297 427.353 429.603 431.739 

a 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 
T(K) 433.802 435.825 437.844 439.895 442.025 444.301 446.835 449.856 454.023 

TABLE 6 

Comparison of E values for different approximations 

Approximation/equation E % deviation 
(kJ mol-‘) from theoretical value a 

(I) Equation (37) of present work 

In J.W- 
[ 1 T’ .921503 

= lnAE + 3.77205 - 1.921503 In E 
(PR -0.120394( E/T) 

99.6266 0.3734 

(2) Coats and Redfern 

(3) MacCallum and Tanner 

log g(a) = logs -0.483E0.435 
(0.449+0.217E)x103 - 

T 

99.4384 0.5616 

98.6046 1.3954 

’ Theoretical value of E = 100 kJ mol-‘. 
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observed deviations from the theoretical E value are 0.3734, 0.5616 and 
1.3954% for eqn. (37) (present work), Coats-Redfem and MacCallum- 
Tanner equations, respectively. 

The validity of our approximation was further confirmed by the E value 
computed from Gyulai and Greenhow theoretical TG data [24]. When these 
data were introduced in eqn. (37), the E value obtained by us is 251.093 kJ 
mol-’ whereas that calculated by Gyulai and Greenhow is 251.333 kJ 
mol-‘; the theoretical value of E assumed by these authors is 251.160 kJ 
mol-‘. The percentage error for the two approximations is 0.0267 and 
0.0689, respectively, from the theoretical value (E = 251.160 kJ mol-‘). 

CONCLUSION 

The series approximation given by eqn. (12) and the approximation given 
by Scholmilch [21] 

(x:1) +(x+&+2) - (x+1)1:(~+3) 

+ (X+1)3:(x+4) - (X+I)14g(x+5) *** 1 
give close values of p(x), and the percentage deviation between the two is 
1.92 X 10m6 (for x = 20). 

The three-term approximation for p(x) given in eqn. (14) also agrees very 
well with the Scholmilch approximation. It is found that the approximation 
used in eqn. (14) is much superior to all other approximations with a 
minimum percentage deviation of 1.15 x 10v6 (for x = 20). 

Equation (23) gives close values of E for the theoretically generated TG 
curve which indicates that the intercept from In p(x) versus l/T or E plots 
can be linearly related to In E or In T better than ln(intercept) versus In E 
or In T. 

Equation (37) which employs T1.921503 in place of T2 as in the Coats and 
Redfern equation, gives values of E closer to the theoretical value. Similarly, 
eqn. (37) gives more accurate E values than those from the Coats-Redfern 
and MacCallum-Tanner equations. Therefore, eqn. (37), based on the two- 
term approximation proposed in the present work, is the best suited solution 
for the evaluation of kinetic parameters from thermogravimetric (TG) ex- 
periments. 
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